Marble

marbles, rock, crystalline, limestones, green, original, white, pressure, minerals and usually

Page: 1 2 3

In Canada the crystalline limestones of the pre-Cambrian series yield beautiful marbles.

Marble in Other Countries.

The quarries of France, Bel gium, Italy and Spain, not to mention less important localities, yield a great diversity of marbles, and almost every stone bears a distinctive name, often of trivial meaning; but in this article it is impossible to enumerate the local names used by marble-work ers in different countries. In India we find important quarries at Makrana in Rajputana—a locality which is said to have yielded the marble for the famous Taj Mahal at Agra. In the val ley of the Nerbudda, near Jabalpur, there is a large development of marble. The white marble which is used for the delicately pierced screens called jalee work is obtained from near Raialo, in Ulwar. (F. W. R. ; X.) Petrography.—Marbles are uniformly crystalline, and hence have no bedding or schistosity which would tend to make them fissile, but are entirely massive and free from grain. The micro structure of pure marble is comparatively simple. Thin sections are seen to be built up of somewhat rounded grains of calcite, fitting closely together in a mosaic; very rarely do any grains show traces of crystalline form. They are colourless and trans parent, and are usually traversed by a lattice-work of sharply defined cleavage cracks, which correspond to the rhombohedral faces. In polarized light the colours are pinkish or greenish white, or in very thin sections iridescent because the mineral has a very strong double refraction. They may also be crossed by bars or stripes, each of which indicates a twin plate, for the crystals are usually polysynthetic. This twinning may be produced by pressure acting either during the crystallization of the rock or at a later period.

The purest marbles generally contain some accessory minerals, and in many they form a considerable proportion of the mass. The commonest are quartz in small rounded grains, scales of colourless or pale yellow mica (muscovite and phlogopite), dark shining flakes of graphite and small crystals of pyrites or iron oxides. Even fine Carrara marble leaves a residue of this sort when dissolved in acid. Many marbles contain other minerals which are usually silicates of lime or magnesia. The list of these accessories is a very large one. Diopside is very frequent and may be white or pale green ; hornblende occurs as white bladed tremolite or pale green actinolite; feldspars may be present also, such as orthoclase, or more frequently some plagioclase such as albite, labradorite and anorthite, scapolite (or wernerite) ; various kinds of garnet; vesuvianite, spinel, forsterite, periclase, brucite, talc, zoisite and epidote, chondrodite, biotite, datolite, sphene and apatite may be mentioned as typical accessory min erals. The presence of metalliferous minerals such as galena, grey or red silver ores, zinc blende, antimonite, chalcopyrite, molybdenite, cassiterite, usually indicates impregnation by ore bearing solutions, especially if these substances occur in workable quantities. The rubies of Burma are found in crystalline lime stones and are constantly accompanied by precious spinel (or balasruby).

These minerals represent impurities in the original limestone which crystallized at the time that the marble became crystalline. The silicates derive their silica mainly from sand or infiltrated siliceous deposits; the alumina represents an admixture of clay; the iron came from limonite or hematite in the original state of the rock. Where the silicates bulk largely because the original limestone was highly impure, all the carbonic acid may be driven out and replaced by silica during the process of recrystallization.

The rock is then a calc-silicate rock, hard, tough, flinty and no longer readily soluble in acids. They are sometimes fine-grained hornstones (known as calc-silicate hornfelses). Where white minerals predominate (wollastonite, tremolite, feldspar) these rocks may have a close resemblance to marbles, but often they are green from the abundance of green pyroxenes and amphiboles, or brown (when garnet and vesuvianite are present in quantity) or yellow (with epidote, chondrodite or sphene). Decomposi tion induces further changes in colour owing to the formation of green or yellow serpentine, pale green talc, red hematite, and brown limonite. Most of the coloured or variegated crystalline marbles have originated in this manner. Often bands of calc silicate rock alternate with bands of marble, and they may be folded or bent; in other cases, nodules and patches of silicates occur in a matrix of pure marble. Earth movements may shatter the rocks, producing fissures afterwards filled with veins of calcite; in this way the beautiful brecciated or veined marbles are produced. Sometimes the broken fragments are rolled and rounded by the flow of the marble under pressure and pseudo conglomerates or "crush conglomerates" result. In other cases the banding of the marble indicates the original bedding of the calcareous sediments. Crystalline limestones which contain much mica may be called cipollins ; in them quartz, garnet and horn blende often also occur. The ophicalcites are marbles containing much serpentine, which has been formed by the decomposition of forsterite or diopside. The much-discussed Eozoon, at one time supposed to be the earliest known fossil and found in Archaean limestones in Canada, is now known to be inorganic and to belong to the ophicalcites.

Many marbles, probably all, are metamorphosed limestones. The passage of limestones rich in fossils into true marbles as they approach great crystalline intrusions of granite is a phenomenon seen in many parts of the world; occasionally the recrystallization of the rock has not completely obliterated the organic structures (e.g., at Carrara and at Bergen in Norway). The agencies which have induced the metamorphism are heat and pressure, the heat arising from the granite and the pressure from overlying masses of rock, for these changes took place before the granite cooled and while it was still deeply buried beneath the surface. As rocks which have undergone changes of this kind are commonest in the oldest and deepest layers of the earth's crust, most marbles are Palaeozoic or pre-Cambrian. They occur very often with mica schists, phyllites, etc., which were beds of clay alternating with the original limestone. In regions where the sedimentary rocks have been converted into schists, gneisses and granulites, the limestones are represented by calc schists, cipollins and marbles. Often no granite or other intrusive rock is present which may be regarded as the cause of the metamorphism. The marbles are often banded or schistose, and under the microscope show crush ing and deformation of the component crystals, such as would have been produced by the earth pressures which accompany rock-folding. These crush structures have been obtained ex perimentally in marbles subjected to great pressures in steel cylinders. In the recrystallization of these limestones the direct heating action of igneous intrusions may have played no part, but the rise of temperature and increase of pressure due to the fold ing of great rock masses have probably been the operating causes.

(J.

S. F.)

Page: 1 2 3